Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user. The term is generally used to describe data centers available to many users over the Internet. Large clouds, predominant today, often have functions distributed over multiple locations from central servers. If the connection to the user is relatively close, it may be designated an edge server.

Cloud computing relies on sharing of resources to achieve coherence and economies of scale. Advocates of public and hybrid clouds note that cloud computing allows companies to avoid or minimize up-front IT infrastructure costs. Proponents also claim that cloud computing allows enterprises to get their applications up and running faster, with improved manageability and less maintenance, and that it enables IT teams to more rapidly adjust resources to meet fluctuating and unpredictable demand.


  • Agility for organizations may be improved, as cloud computing may increase users’ flexibility with re-provisioning, adding, or expanding technological infrastructure resources
  • Cost reductions are claimed by cloud providers
  • Device and location independence enable users to access systems using a web browser regardless of their location or what device they use (e.g. PC, mobile phone)
  • Maintenance of cloud computing applications is easier, because they do not need to be installed on each user’s computer and can be accessed from different places
  • Performance is monitored by IT experts from the service provider, and consistent and loosely coupled architectures are constructed using web services as the system interface
  • Productivity may be increased when multiple users can work on the same data simultaneously, rather than waiting for it to be saved and emailed

Service Models

Though service-oriented architecture advocates “Everything as a service” (with the acronyms EaaS or XaaS, or simply aas), cloud-computing providers offer their “services” according to different models, of which the three standard models per NIST are Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS)

  • Infrastructure as a service (IaaS) refers to online services that provide high-level APIs used to dereference various low-level details of underlying network infrastructure like physical computing resources, location, data partitioning, scaling, security, backup etc.
  • Platform as a Service (PaaS) is The capability provided to the consumer is to deploy onto the cloud infrastructure consumer-created or acquired applications created using programming languages, libraries, services, and tools supported by the provider. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, or storage, but has control over the deployed applications and possibly configuration settings for the application-hosting environment.
  • Software as a Service (SaaS) is The capability provided to the consumer is to use the provider’s applications running on a cloud infrastructure. The applications are accessible from various client devices through either a thin client interface, such as a web browser (e.g., web-based email), or a program interface. The consumer does not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with the possible exception of limited user-specific application configuration settings.

Limitations and disadvantages

According to Bruce Schneier, “The downside is that you will have limited customization options. Cloud computing is cheaper because of economics of scale, and—like any outsourced task—you tend to get what you want. A restaurant with a limited menu is cheaper than a personal chef who can cook anything you want. Fewer options at a much cheaper price: it’s a feature, not a bug.” He also suggests that “the cloud provider might not meet your legal needs” and that businesses need to weigh the benefits of cloud computing against the risks. In cloud computing, the control of the back end infrastructure is limited to the cloud vendor only. Cloud providers often decide on the management policies, which moderates what the cloud users are able to do with their deployment. Cloud users are also limited to the control and management of their applications, data and services. This includes data caps, which are placed on cloud users by the cloud vendor allocating certain amount of bandwidth for each customer and are often shared among other cloud users.

Privacy and confidentiality are big concerns in some activities. For instance, sworn translators working under the stipulations of an NDA, might face problems regarding sensitive data that are not encrypted.

Cloud computing is beneficial to many enterprises; it lowers costs and allows them to focus on competence instead of on matters of IT and infrastructure. Nevertheless, cloud computing has proven to have some limitations and disadvantages, especially for smaller business operations, particularly regarding security and downtime. Technical outages are inevitable and occur sometimes when cloud service providers (CSPs) become overwhelmed in the process of serving their clients. This may result to temporary business suspension. Since this technology’s systems rely on the internet, an individual cannot be able to access their applications, server or data from the cloud during an outage.


With progressive development in every field of technological on which Cloud Computing depends it is flourishing and will flourish in future. We can see many examples in present that many market leaders and giants are already working on it. Like Goggle’s ‘google lens’ and Stadia are recent examples where processing is done on servers and results seen on clients. With the 5G connectivity cloud computing is the future of computing.


Leave a Reply

Your email address will not be published. Required fields are marked *